Every day our eyes catch the light of our memories – time spent with family, the journey to work, a special holiday, a beautiful sunset or a dark starlit night. Each image captured is a picture drawn in light – a photograph: only to be lost in our minds or forever forgotten. Nearly two hundred years ago a small group of amateur scientists achieved what had eluded mankind for centuries – the ability to capture a permanent record of an image seen by their own eyes – a moment in time frozen onto a surface. They had discovered Photography. They were the ‘Catchers of the Light’.

Thursday, November 12, 2015

IC 1795 SHO


IC 1795 is an emission nebula located about 6,000 light-years away in the constellation Cassiopeia.
The dominant central star of IC 1795 is a blue dwarf on the main sequence. In addition there are three other stars of class O and B with ages between 3 and 5 million years. This being an age intermediate to the 6 to 20 million years of the shell structure that encloses the complex. The region is one of the sites most studied (besides Orion) for the formation of massive stars. This area is more dense and rich in H II. It is home to, and hides, a group of young blue stars, with their radiation ionizing the residual gas clouds. (WIKI).

Instruments and exposure data:
W.O FLT110 with dedicated TMB field flattener
FeatherTouch 3'' focuser
Starizona MicroTouch autofocuser
W.O ZS80 ED
SBIG ST10XME CFW9
Meade DSI
Filters: Ha 5nm Astrodon_S[II] 8nm Baader_O[III] 3nm Astrodon
Sky-Watcher EQ6 Pro

SII:55*7min bin1x1
Ha:60*7min bin1x1
OIII:51*9min bin1x1
Total exposure time:20h 43min

Location: Vironas,Athens Greece

Sunday, October 11, 2015

The Cave Nebula


The Cave Nebula ( Sharpless 2-155, Caldwell 9) is part of an extensive region of ionized hydrogen gas region. Sharpless 2-155 is a dim and very diffuse nebula within a larger nebula complex containing emission, reflection, and dark nebulosity. It is located in the constellation Cepheus and associated with the Cepheus B giant molecular cloud, laying at a distance of about 2800 light-years. Part of the cloud is illuminated by a pack of hot, young stars known as the Cepheus OB3 association.

Instruments and exposure data:
W.O FLT110 with dedicated TMB field flattener
FeatherTouch 3'' focuser
Starizona MicroTouch autofocuser
W.O ZS80 ED
SBIG ST10XME CFW9
Meade DSI
Filters: Ha 5nm Astrodon_S[II] 8nm Baader_O[III] 3nm Astrodon
Sky-Watcher EQ6 Pro

Ha:50*8min bin1x1
S[II]:63*8min bin1x1
O[III]:57*8min bin1x1
Total exposure time:22h 40min

Vironas,Athens Greece

Tuesday, October 6, 2015

IC 1795


IC 1795 is an emission nebula located about 6,000 light-years away in the constellation Cassiopeia.
The dominant central star of IC 1795 is a blue dwarf on the main sequence. In addition there are three other stars of class O and B with ages between 3 and 5 million years. This being an age intermediate to the 6 to 20 million years of the shell structure that encloses the complex. The region is one of the sites most studied (besides Orion) for the formation of massive stars. This area is more dense and rich in H II. It is home to, and hides, a group of young blue stars, with their radiation ionizing the residual gas clouds. (WIKI).

Instruments and exposure data:
W.O FLT110 with dedicated TMB field flattener
FeatherTouch 3'' focuser
Starizona MicroTouch autofocuser
W.O ZS80 ED
SBIG ST10XME CFW9
Meade DSI
Filters: Ha 5nm Astrodon
Sky-Watcher EQ6 Pro

Ha:60*7min bin1x1
Total exposure time:7h

Location: Vironas,Athens Greece

Astrobin Image of the Day 11 Oct 2015

Wednesday, August 26, 2015

Cave Nebula , the wild beauty of black and white


S 155, also known as the Cave Nebula, Sh2-155 or Caldwell 9, is a dim and very diffuse bright nebula within a larger nebula complex containing emission, reflection, and dark nebulosity. It is located in the constellation Cepheus.

Visually it is a difficult object, but with adequate exposure, makes a striking image. The nebula gets its name Cave Nebula from the dark lane at the eastern side abutting the brightest curve of emission nebulosity which gives the appearance of a deep cave when seen through a telescope visually.

from wikipedia

A new project begins...
I hope the weather,allow me to finish soon the other 2 narrowband filters

Instruments and exposure data:
W.O FLT110 with dedicated TMB field flattener
FeatherTouch 3'' focuser
Starizona MicroTouch autofocuser
W.O ZS80 ED
SBIG ST10XME CFW9
Meade DSI
Filters: Ha 5nm Astrodon_S[II] 8nm Baader_O[III] 3nm Astrodon
Sky-Watcher EQ6 Pro

Ha:50*8min bin1x1
Total exposure time:6h 40min

Vironas,Athens Greece





Saturday, August 15, 2015

M20 Trifid Nebula in narrowband





The Trifid Nebula (catalogued as Messier 20 or M20 and as NGC 6514) is an H II region located in Sagittarius. It was discovered by Charles Messier on June 5, 1764.[3] Its name means 'divided into three lobes'. The object is an unusual combination of an open cluster of stars; an emission nebula (the lower, red portion), a reflection nebula (the upper, blue portion) and a dark nebula (the apparent 'gaps' within the emission nebula that cause the trifurcated appearance; these are also designated Barnard 85). Viewed through a small telescope, the Trifid Nebula is a bright and peculiar object, and is thus a perennial favorite of amateur astronomers.

From Wikipedia, the free encyclopedia



Photographic shots were completed in the period from 14 June  to 6 August and needed a total of 7 nights.
Unfortunately, in all the shots I had problem with passing clouds and high humidity .

Instruments and exposure data:
W.O FLT110 with dedicated TMB field flattener
FeatherTouch 3'' focuser
Starizona MicroTouch autofocuser
W.O ZS80 ED
SBIG ST10XME CFW9
Meade DSI
Filters: Ha 5nm Astrodon_S[II] 8nm Baader_O[III] 3nm Astrodon
Sky-Watcher EQ6 Pro

Ha:40*9min bin1x1
S[II]:23*9min bin1x1
O[III]:21*9min bin1x1
Total exposure time:12h 36min

Vironas,Athens Greece

Monday, June 15, 2015

SH2-60


A rarely photographed object and much more faint than i originally thought !

Instruments and exposure data:

W.O FLT110 with dedicated TMB field flattener
FeatherTouch 3'' focuser
Starizona MicroTouch autofocuser
W.O ZS80 ED
SBIG ST10XME CFW9
Meade DSI
Filters: Ha 5nm Astrodon
Sky-Watcher EQ6 Pro

Ha:28*10min bin1x1

Monday, June 1, 2015

Schroter's Valley


Schroter's Valley, frequently known by the Latinized name Vallis Schröteri, is a sinuous valley or rille on the surface of the near side of the Moon. It is located on a rise of continental ground, sometimes called the Aristarchus plateau, that is surrounded by the Oceanus Procellarum to the south and west and the Mare Imbrium to the northwest. At the southern edge of this rise are the craters Aristarchus and Herodotus.

This is the largest sinuous rille on the Moon. It begins at a 6 km diameter crater located 25 km to the north of Herodotus. (The start of the rille has been termed the "Cobra's Head" by some observers, due to its resemblance to a snake.) From the crater it follows a meandering path, first to the north, then setting a course toward the northeast, before finally bending back to the south until it reaches a 1 km high precipice at the edge of the Oceanus Procellarum. The rille has a maximum width of about 10 km, then gradually narrows to less than a kilometer near its terminus.

The origins of this rille are believed to be volcanic. The interior floor has been resurfaced and is very level. However there is a slender rille located on the floor, which can be photographed from Earth with a good telescope and good seeing.

The rille has been the subject of numerous transient lunar phenomena observations.

The selenographic coordinates of this valley are 26.2°N 50.8°W, and it has a maximum diameter of 168 km. It is named for Johannes H. Schröter.

It was a potential landing site for the canceled Apollo 18 mission

Instruments and exposure data:

LX90 ota
Eq6 Pro
IS DBK21
PowerMate x2.5
FPS :60 
Frames:4240

30 May 2015
23:43 Local time
Athens

Sunday, May 17, 2015

IC 410 The Tadpoles



IC 410 an emission nebula about 12,000 light-years from Earth in the constellation Auriga. Near the center of the nebulous region is a star cluster ( NGC 1893) and just to the bottom left of this cluster lies two structures that resemble tadpoles. These structures are made of leftover hydrogen and dust from the formation of the star cluster and the "tails" are from the solar wind coming from the stars of NGC 1893.

Instruments and exposure data:
W.O FLT110 with dedicated TMB field flattener
FeatherTouch 3'' focuser
Starizona MicroTouch autofocuser
W.O ZS80 ED
SBIG ST10XME CFW9
Meade DSI
Filters: Ha 5nm Astrodon
Sky-Watcher EQ6 Pro

Ha:36*10min bin1x1

This is a combination of my Ha data as a base luminance, about 6 hours of 36 frames 600 sec each, with Irving's data .

Many thanks to Irving for SII,OIII and Ha data of IC410.

Wednesday, April 29, 2015

Jupiter grs Europa and shadow


Jupiter grs Europa and shadow

26 April 2015
20:51:51 Local time
Athens

LX90 ota
Eq6 Pro
IS DBK21
PowerMate x2.5

Saturday, March 28, 2015

SH2-115 and Berkeley 90 Ha light


Sharpless 115 stands just north and west of Deneb. Noted in the 1959 catalog by astronomer Stewart Sharpless (as Sh2-115) the faint but lovely emission nebula lies along the edge of one of the outer Milky Way's giant molecular clouds, about 7,500 light-years away. Shining with the light of ionized atoms of hydrogen, sulfur, and oxygen in this Hubble palette color composite image, the nebular glow is powered by hot stars in star cluster Berkeley 90. The cluster stars are likely only 100 million years old or so and are still embedded in Sharpless 115. But the stars' strong winds and radiation have cleared away much of their dusty, natal cloud. At the emission nebula's estimated distance, this cosmic close-up spans just under 100 light-years.
http://apod.nasa.gov/apod/ap130614.html

Instruments and exposure data:
W.O FLT110 with dedicated TMB field flattener
FeatherTouch 3'' focuser
Starizona MicroTouch autofocuser
W.O ZS80 ED
SBIG ST10XME CFW9
Meade DSI
Filters: Ha 5nm Astrodon
Sky-Watcher EQ6 Pro

Ha:60*10min bin1x1

Friday, March 27, 2015

Propeller Halo Moon


This is an old photo , back in 2006 with a 350D.

Some HDR processing in PS

Saturday, March 14, 2015

SH2-115 and Berkeley 90 _ Re


Completely new processed.

Sh2-115 proved much more difficult target than i originally thought.
For collecting the photons i wanted , i had to face extremely bad atmospheric conditions, such as high humidity and temperature, in all 5 nights that needed for completion the whole project.
It is a beautiful object but very faint particulary in OIII and SII with complex structures.

Hope you like it ...!

Sharpless 115 stands just north and west of Deneb. Noted in the 1959 catalog by astronomer Stewart Sharpless (as Sh2-115) the faint but lovely emission nebula lies along the edge of one of the outer Milky Way's giant molecular clouds, about 7,500 light-years away. Shining with the light of ionized atoms of hydrogen, sulfur, and oxygen in this Hubble palette color composite image, the nebular glow is powered by hot stars in star cluster Berkeley 90. The cluster stars are likely only 100 million years old or so and are still embedded in Sharpless 115. But the stars' strong winds and radiation have cleared away much of their dusty, natal cloud. At the emission nebula's estimated distance, this cosmic close-up spans just under 100 light-years.
http://apod.nasa.gov/apod/ap130614.html

Instruments and exposure data:
W.O FLT110 with dedicated TMB field flattener
FeatherTouch 3'' focuser
Starizona MicroTouch autofocuser
W.O ZS80 ED
SBIG ST10XME CFW9
Meade DSI
Filters: Ha 5nm Astrodon_S[II] 8nm Baader_O[III] 3nm Astrodon
Sky-Watcher EQ6 Pro

Ha:60*10min bin1x1
S[II]:19*15min bin1x1
O[III]:23*15min bin1x1_35*10min_bin1x1
Total exposure time:26h 20min

Sunday, February 22, 2015

Venus


Venus 18 Mar 2012 19:35 local time

Telescope : Meade LX90 (ota only)
Camera : IS DBK21
Televue Powermate x2,5
Mount: EQ6Pro

Venus is the second planet from the Sun, orbiting it every 224.7 Earth days.[11] It has no natural satellite. It is named after the Roman goddess of love and beauty. After the Moon, it is the brightest natural object in the night sky, reaching an apparent magnitude of −4.6, bright enough to cast shadows.[12] Because Venus is an inferior planet from Earth, it never appears to venture far from the Sun: its elongation reaches a maximum of 47.8°.

Venus is a terrestrial planet and is sometimes called Earth's "sister planet" because of their similar size, mass, proximity to the Sun and bulk composition. However, it has also been shown to be radically different from Earth in other respects. It has the densest atmosphere of the four terrestrial planets, consisting of more than 96% carbon dioxide. The atmospheric pressure at the planet's surface is 92 times that of Earth's. With a mean surface temperature of 735 K (462 °C; 863 °F), Venus is by far the hottest planet in the Solar System, even though Mercury is closer to the Sun. Venus has no carbon cycle that puts carbon into rock, nor does it seem to have any organic life to absorb carbon in biomass. Venus is shrouded by an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. It may have possessed oceans in the past,[13][14] but these would have vaporized as the temperature rose due to a runaway greenhouse effect.[15] The water has most probably photodissociated, and, because of the lack of a planetary magnetic field, the free hydrogen has been swept into interplanetary space by the solar wind.[16] Venus' surface is a dry desertscape interspersed with slab-like rocks and periodically refreshed by volcanism

Saturday, January 24, 2015

C/2014 Q2 (Lovejoy) _15-1-2015




C/2014 Q2 (Lovejoy) is a long-period comet discovered on 17 August 2014 by Terry Lovejoy using a 0.2-meter (8 in) Schmidt–Cassegrain telescope.[1] It was discovered at apparent magnitude 15 in the southernconstellation of Puppis.[1] It is the fifth comet discovered by Terry Lovejoy.

By December 2014, the comet had brightened to roughly magnitude 7.4,[4] making it a small telescope and binoculars target. By mid-December, the comet was visible to the naked eye for experienced observers with dark skies and keen eyesight.[5] On 28−29 December 2014, the comet passed 1/3° from globular cluster Messier 79.[6] In January 2015, it brightened to roughly magnitude 4−5,[7] and became one of the brightest comets located high in a dark sky in years. On 7 January 2015, the comet passed 0.469 AU (70,200,000 km; 43,600,000 mi) from Earth.[8] It crossed the celestial equator on 9 January 2015 becoming better seen from thenorthern hemisphere.[9] The comet will come to perihelion (closest approach to the Sun) on 30 January 2015 at a distance of 1.29 AU (193,000,000 km; 120,000,000 mi) from the Sun.[2]

Before entering the planetary region (epoch 1950), C/2014 Q2 had an orbital period of about 11000 years.[3] After leaving the planetary region (epoch 2050), it will have an orbital period of about 8000 years.[3]

Saturday, January 17, 2015

C/2014 Q2 (Lovejoy) Animation


15-1-2015 C/2014 Q2 (Lovejoy) Animation

The gif file is quite big ,so please be patient.

No noise reduction,just calibration with darks and flats

40 frames total ,100 sec/frame

W.O FLT110 with dedicated TMB field flattenerFeatherTouch 3'' focuser
Starizona MicroTouch autofocuser
W.O ZS80 ED
SBIG ST10XME CFW9
Meade DSI
Filters: Lum Baader
Sky-Watcher EQ6 Pro